FICHE TECHNIQUE TB 26d

BR 26d Vanne à boisseau sphérique inox

Exécutions DIN et ANSI

CE

Application

Vanne à boisseau sphérique à fermeture étanche en inox pour fluides agressifs, en particulier pour les exigences élevées dans les installations chimiques :

- Diamètre nominal DN 15 à 150 et diamètre nominal ½ à 4
- Pression nominale PN 16 et 40 ainsi que cl150 et cl300
- Températures -10 °C à +200 °C, (en option -60 °C/-80 °C à +230 °C)

L'appareil de réglage est constitué d'une vanne à boisseau sphérique en inox et d'un servomoteur rotatif pneumatique, d'un levier manuel ou d'un entraînement manuel. Les appareils présents dans le système de boîtier ont les caractéristiques spécifiques suivantes :

Conceptions

- Version standard sans ressort
- Version avec étanchéité par ressort
- Version Fire-Safe avec certificat conformément à :
 - API 607 6e éd. et EN ISO 10497
 - Normes britanniques B.S. 6755 Partie 2
- TA-Luft 2021 / DIN EN ISO 15848-1

Autres caractéristiques

- Corps en acier inoxydable 1.4408 / A351 CF8M
- Bagues de siège avec ressort au choix sur un côté
- Bagues de siège remplaçables
- Taux de fuite A selon DIN EN 12266-1 pour applications « On/Off »
- Etanchéité de l'arbre de commande vers l'extérieur sans entretien grâce à une garniture M-PTFE à réglage automatique et précontrainte par ressort Belleville
- Arbre anti-éjection en 1.4462, TA-Luft
- Longueur de construction DIN série 1 et série 27 selon DIN 558
- Longueur de construction ANSI selon ASME B16.10-2000
- Bride de montage pour servomoteurs selon DIN ISO 5211
- Système de joint de corps double
- Décharge antistatique

Exécutions

La vanne à boisseau sphérique BR 26d est disponible, au choix, dans les exécutions suivantes :

- · Avec levier manuel
- Avec réducteur à volant
- Avec servomoteur rotatif pneumatique (pour les particularités, voir la fiche technique correspondante)
- Selon les souhaits du client

Figure 1: Vanne à boisseau sphérique BR 26d avec levier manuel

Figure 2: Vanne à boisseau sphérique 26d avec servomoteur rotatif BR 31a

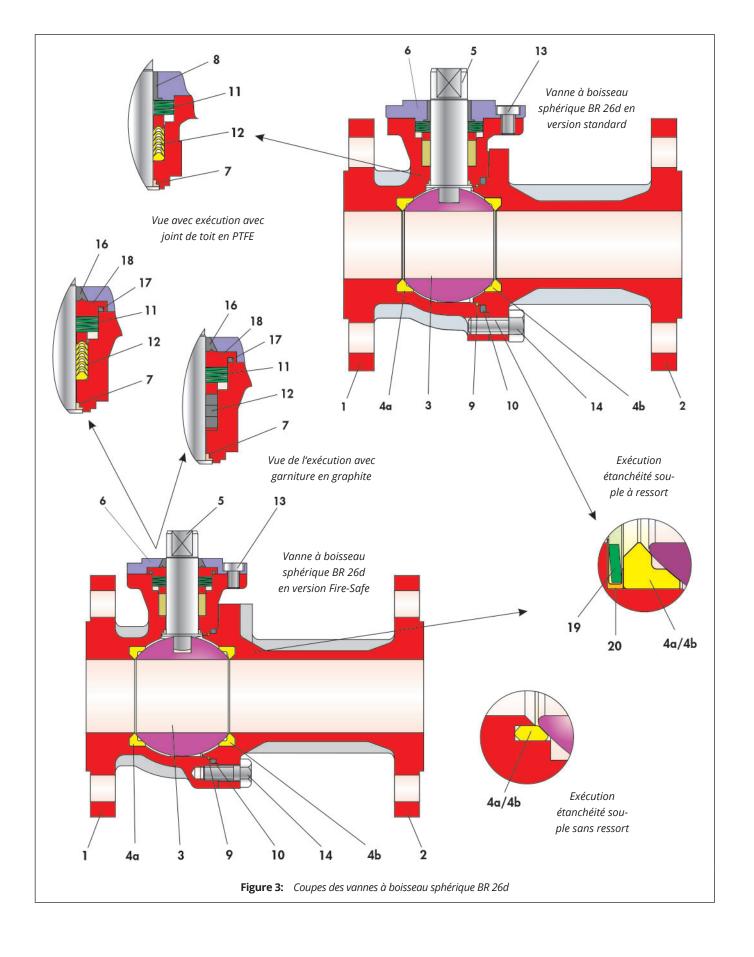


Tableau 1: Nomenclature

Pos.	Désignation
1	Corps de base
2	Corps latéral
3	Boisseau sphérique
4	Bague de siège
5	Arbre de commande
6	Fouloir de presse-étoupe
7	Palier (lisse)
8	Palier (lisse)
9	Joint
10	Joint

Pos.	Désignation								
11	Jeu de rondelles-ressorts								
12	Garniture								
13	Vis								
14	Vis/goujon fileté 1)								
15	Écrou 1)								
16	Bague								
17	Bague								
18	Douille								
19	Rondelle-ressort								
20	Gaine de rondelle à ressort								

¹⁾ En fonction du diamètre nominal, il est possible d'utiliser les goujons filetés avec des écrous ou des vis

Exécutions spéciales

- Corps en acier 1.0619 / A216 WCB
- Étanchéité de sécurité de l'arbre de commande
- Chemise de réchauffage inox avec diverses adaptations
- Exécutions à bride selon DIN EN 1092
- Utilisation en tant que vanne de régulation grâce à une bague de siège calibrée
- Modification du corps/joint(s)/boisseau sphérique
- Exécution haute température jusqu'à 230 °C

Fonctionnement

Les vannes à boisseaux sphériques de la série 26d peuvent être traversées dans les deux sens avec un passage intégralement ouvert.

Le boisseau sphérique (3) et son passage cylindrique pivotent autour de l'arbre de commande. L'angle d'inclinaison du boisseau sphérique détermine le débit en modifiant l'espace libre entre le corps (1) et le boisseau sphérique.

Le boisseau sphérique (3) est étanchéifié avec des bagues de siège (4) qui peuvent être remplacées.

L'arbre de commande est étanchéifié par une garniture M-PTFE (12). La précontrainte est assurée par des rondelles-ressorts (11) disposées au-dessus de la garniture. L'arbre de commande guidé vers l'extérieur est équipé d'un levier manuel (21). L'adapation d'un servomoteur rotatif pneumatique ou d'un entraînement manuel est possible en option.

i Nota

La vanne à boisseau sphérique peut également être utilisée à des fins de régulation. Il faut toutefois prendre en compte la fiche technique DB 20a-kd.

i Nota

Avant toute utilisation dans une atmosphère explosible, il faut prendre en compte la possibilité d'utilisation d'une vanne à boisseau sphérique selon ATEX 2014/34/UE à l'aide de la notice de montage et de mise en service EB 26d!

Position de sécurité

Selon la façon dont est monté le servomoteur rotatif pneumatique, la vanne à boisseau sphérique peut adopter l'une des deux positions de sécurité différentes en cas d'équilibrage de pression ou de coupure de l'alimentation d'air :

 Vanne à boisseau sphérique avec servomoteur « Ressort ferme » :

La vanne à boisseau sphérique se ferme en cas de coupure de l'alimentation d'air. La vanne à boisseau sphérique s'ouvre par augmentation de la pression qui s'oppose à la force des ressorts.

 Vanne à boisseau sphérique avec servomoteur « Ressort ouvre » :

La vanne à boisseau sphérique s'ouvre en cas de coupure de l'alimentation d'air. La vanne à boisseau sphérique se ferme par augmentation de la pression qui s'oppose à la force des ressorts.

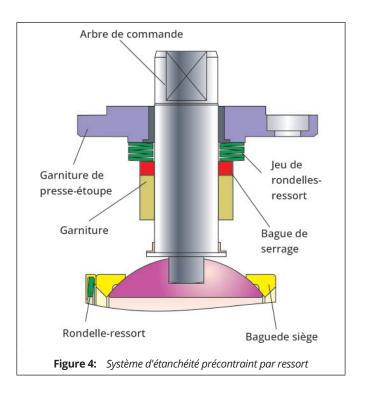
Combinaisons optionnelles de matériaux

Pour une adaptation optimale dans les conditions de service en vigueur, il est possible de modifier la vanne à boisseau sphérique du BR 26 d en fonction des matériaux utilisés (corps, arbre de commande, boisseau sphérique et joints), pour l'adapter à l'application.

Équipements supplémentaires

Pour les organes de réglage, les accessoires suivants sont disponibles, au choix, individuellement ou en lot :

- Dispositif de verrouillage
- Extension pour arbre de commande (100 mm par défaut)
- Servomoteurs rotatifs pneumatiques ou électriques
- Positionneurs (pour application en régulation)
- Commutateurs de fin de course
- Électrovannes
- Détendeur avec filtre
- Chemise de réchauffage
- Bague de siège calibré pour applications de régulation

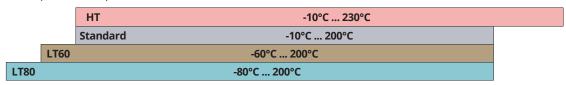

Autres équipements possibles sur demande.

Avantages du système d'étanchéité précontraint par ressort

- Sans maintenance et à réglage automatique
- Étanchéité de haut niveau, même en cas de variations extrêmes de la pression et de la température
- Durées d'inactivé prolongées

Avantages du système d»étanchéité avec ressort

- Deux bagues de siège actives
- Faible augmentation du couple de serrage lorsque la température augmente, ce qui fait que, sous certaines conditions, des servomoteurs plus petits sont nécessaires
- En résumé : un très haut niveau de rentabilité!



Diagrammes pression-température pour les vannes à boisseau sphérique DIN

Le domaine d'utilisation est déterminé par le diagramme correspondant pression-température. Les données de processus et le fluide peuvent influencer les valeurs des diagrammes.

Matériau du boîtier: 1.4408 (DIN EN 1092-1) Matériau de la bague d'étanchéité: M-PTFE / PTFE

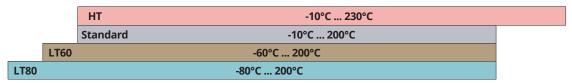
Tableau 2: Valeurs pression-température PN16

		Température en °C															
DN	-80	-60	-10	0	20	40	60	80	100	120	140	160	180	200	220	230	
15 25	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	15.9	15.7	15.5	15.2	14.9	10.0	8.0	
32 50	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	15.9	15.7	15.5	15.2	14.0	9.0	7.0	
65 80	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	15.9	15.7	15.5	15.2	13.5	8.0	6.0	F
100	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	15.9	15.7	15.5	15.2	12.0	7.0	5.0	
125 150	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	15.9	15.7	15.5	15.2	8.0	4.0	1.5	
								Stan	dard								

Tableau 3: Valeurs pression-température PN40

		нт	-10°C 230°C	
	5	Standard	-10°C 200°C	
	LT60		-60°C 200°C	
LT80			-80°C 200°C	

		Température en °C															
DN	-80	-60	-10	0	20	40	60	80	100	120	140	160	180	200	220	230	
15 25	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	37.0	32.0	25.0	18.0	10.0	8.0	
32 50	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	39.5	33.5	28.0	22.0	15.0	9.0	7.0	Pression
65 80	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	38.0	35.5	31.0	26.5	20.0	13.5	8.0	6.0	en bar
100	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	28.3	25.0	18.0	12.0	7.0	5.0	
								Stan	dard								


Diagrammes pression-température pour les vannes à boisseau sphérique ANSI

Le domaine d'utilisation est déterminé par le diagramme correspondant pression-température. Les données de processus et le fluide peuvent influencer les valeurs des diagrammes.

Matériau du boîtier: A351-CF8M (ASME B16.34 / ASME B16.5)

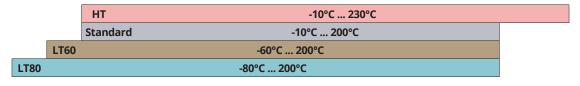

Matériau de la bague d'étanchéité: M-PTFE / PTFE

Tableau 4: Valeurs pression-température cl150

		Température en °C															
NPS	-80	-60	-10	0	20	40	60	80	100	120	140	160	180	200	220	230	
1/2 1	19.0	19.0	19.0	19.0	19.0	19.0	17.9	17.0	16.2	15.6	15.0	14.6	14.1	13.7	10.0	8.0	
1 1/4 2	19.0	19.0	19.0	19.0	19.0	19.0	17.9	17.0	16.2	15.6	15.0	14.6	14.1	13.7	9.0	7.0	
2½ 3	19.0	19.0	19.0	19.0	19.0	19.0	17.9	17.0	16.2	15.6	15.0	14.6	14.1	13.5	8.0	6.0	Pressio en bai
4	19.0	19.0	19.0	19.0	19.0	19.0	17.9	17.0	16.2	15.6	15.0	14.6	14.1	12.0	7.0	5.0	CITIO
6	19.0	19.0	19.0	19.0	19.0	19.0	17.9	17.0	16.2	15.6	15.0	14.6	14.0	8.0	4.0	1.5	
	Standard																

Tableau 5: pression-température cl300

		Température en °C															
NPS	-80	-60	-10	0	20	40	60	80	100	120	140	160	180	200	220	230	
1/2 1	49.6	49.6	49.6	49.6	49.6	49.6	46.9	44.5	42.2	40.7	37.0	32.0	25.0	18.0	10.0	8.0	
1 1/4 2	41.0	41.0	41.0	41.0	41.0	41.0	41.0	41.0	41.0	39.5	33.5	28.0	22.0	15.0	9.0	7.0	Pre
2½ 3	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	38.0	35.5	31.0	26.5	20.0	13.5	8.0	6.0	er
4	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0	28.3	25.0	18.0	12.0	7.0	5.0	
								Stan	dard								

Tableau 6: Caractéristiques techniques générales

	DIN	ANSI
Diamètre nominal	DN 15 150	NPS ½ 4
Pression nominale	PN 16 40	cl150 cl300
Plage de température	-10 °C +200 °C (en option	n -60 °C / -80 °C +230 °C)
Étanchéité boisseau	M-F	TFE
Taux de fuite	Taux de fuite A selo	on DIN EN 12266-1
Brides	DIN EN 1092-1	ASME B16.5
Garniture de presse-étoupe	Garniture M-PTFE précontra	ainte par rondelles-ressorts
Longueur entre-brides	DIN 558, série 1 ou 27	ASME B16.10

Tableau 7: Matériaux

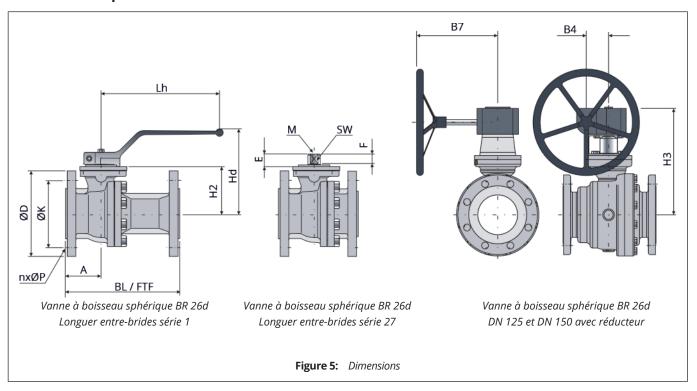

	DIN	ANSI
Corps de base	1.4408	ASTM A351 CF8M
Corps	1.4408 / 1.4571	ASTM A351 CF8M
Boisseau sphérique	1.4408	ASTM A351 CF8M
Arbre de commande	1.4462	ASTM A182 Gr. F51
Bagues de siège	PT	FE
Garniture de presse-étoupe	Garniture M-PTFE av	ec rondelles-ressorts
Coussinet inférieur	PTFE avec 2	5 % de verre
Coussinet supérieur	PTFE avec 25	% de graphite
Joint de corps	M-PTFE/	Graphite

Tableau 8: Valeurs de kvs et de Cv

DN	15	20	25	32	40	50	65	80	100	125	150
NPS	1/2	3/4	1	1 ¼ ¹)	1 ½	2	21/2 1)	3	4	5	6
kvs	12	23	49	80	116	178	291	422	610	954	1 575
Cv	14	27	57	93	135	207	338	491	709	1 108	1 830

¹⁾ Sur demande

Dimensions et poids

Tableau 9: Dimensions en mm et poids en kg de la vanne à boisseau sphérique en exécution DIN

	DN	15	20	25	32	40	50	6	5	80	10	00	125	150
	PN			4	10			16	16 40 40		16	16 40		6
BL/FTF	Série 1	130	150	160	180	200	230	29	90	310	35	50	-	-
DL/FIF	Série 27	115	120	125	130	140	150	17	70	180	19	90	325	350
	Α	50	56	56	54	62.5	65.5	7	2	72.5	82	2.5	120	172
	B4	-	-	-	-	-	-	-	•	-		-	69	84
	B7	-	-	-	-	-	-	-	•	-		-	330	315
	ØD	95	105	115	140	150	165	18	35	200	200 220		250	285
	E	13	19	19	19	22	22	2	2	26 26		31	37	
	F	9	14	14	14	17	17	1	7	19	19		24	30
	H2	46.5	58	58	62	83	91	104	4.5	130.5	143.5		198.5	223
	Н3	-	-	-	-	-	-	-	•	-		-	369	405
	Hd	98.5	109.5	109.5	113.5	143.5	151.5	16	55	177	19	90	-	-
	ØK	65	75	85	100	110	125	14	15	160	180	190	210	240
	Lh	151	155	155	155	250	250	25	50	550	55	50	-	-
	М	M5	M6	M6	M6	M6	M6	M	6	M8	N	18	M10	M12
n	xØP	4x14	4x14	4x14	4x18	4x18	4x18	4x18	8x18	8x18	8x18	8x22	8x18	8x22
	AS	9	14	14	14	17	17	1	7	19	1	9	24	30
Raccor	d DIN/ISO	F03	F05	F05	F05	F07	F07	F07		F10	F′	10	F12	F14
Poids	Série 1	2.6	4.5	5	8	9	12	1	5	28	48	51	-	-
en kg	Série 27	2	4	4	7	7.5	10	1	3	23	33	35	64	100

Tableau 10: Dimension en mm et poids en kg de la vanne à boisseau sphérique en exécution ANSI

	NPS	1/2	3/4	1	11/4	1½	2	21/2	3	4
BL/FTF	cl150	108	117	127	140	165	178	190	203	229
DL/FIF	cl300	140	152	165	178	190	216	241	190 203	305
Α	cl150	51.5	56	54	49	62.5	62.5	72	79.5	82.5
A	cl300	51.5	30	63.5	52	02.5	78.5	/2	85.5	120
ØD	cl150	88.9	98.6	108	115	127	152.4	180	190.5	230
טש	cl300	95.2	117.3	124	135	155.4	165.1	190	209.5	255
	E	13	13	19	19	22	22	22	26	26
	F	9	9.5	14	14	17	17	17	19	19
	H2	46.5	47.5	58	62	83	91	101.5	130.5	143
	Hd	98.5	99.5	109.5	123.5	143.5	151.5	161.5	177	189.5
	Lh	151	151	155	165	250	250	250	550	550
Racco	rd DIN/ISO	F03	F04	F05	F05	F07	F07	F07	F10	F10
ØК	– cl150	60.3	69.9	79.4	88.9	98.4	120.6	139.7	152.4	190.5
nxØP	- (1150	4x15.9	4x15.7	4x15.9	4x15.9	4x15.9	4x19	4x19.1	4x19	8x19.1
ØК	– cl300	66.7	82.6	88.9	98.4	114.5	127	149.2	168.3	200
nxØP	- C1300	4x15.9	4x19	4x19	4x19.1	4x22.2	8x19	8x22.3	8x22.2	4x22.3
	M	M5	M5	M6	M6	M6	M6	M6	M8	M8
	AS	9	9	14	14	17	17	17	19	19
Poids	cl150	2.5	2.7	4	4.8	8	9	17.2	20	42
en kg	cl300	3	3.7	5	6.4	9	11	19.2	25	51.3

Tableau 11: Couple max. admissible, couples min. et couples de décollage

Pression différentielle Δp en ba			Δp en bar	0	5	10	16	20	25	30	40	seulement ANSI 50
DN	NPS	Couple max. de l'arbre En Nm	Couple en Nm	Couple de décollage en Nm								
15	1/2	81	3	5	6	7	7	8	9	10	11	13
20	-	338	5	10	12	15	17	19	21	24	28	33
-	3/4	81	4	10	12	15	17	19	21	24	28	33
25	1	338	5	10	12	14	17	19	21	24	28	33
32	11/4	338	8	15	18	21	25	28	31	34	40	46
40	11/2	654	10	20	24	28	33	36	40	44	52	60
50	2	654	15	30	35	41	47	52	57	62	73	84
65	21/2	654	20	45	54	63	73	80	89	98	115	133
80	3	988	25	60	71	81	94	102	113	123	144	-
100	4	988	40	90	110	130	154	171	191	211	251	-
125	5	2 170	80	170	232	294	368	418	480	-	-	-
150	6	3 992	110	240	300	360	432	-	-	-	-	-

Les couples indiqués ci-dessus se rapportent à l'ouverture de la vanne à boisseau sphérique sous une pression différentielle avec de l'eau, décalé avec des inhibiteurs de corrosion à température ambiante et avec durée de non-activation d'un jour. Comme la pression, le fluide, les fréquences de commutation ainsi que les temps d'arrêt influencent grandement les couples qu'ils provoquent, on prendra en compte les facteurs correspondants lors de la sélection et le dimensionnement du servomoteur. En cas de doute, il est conseillé de consulter Pfeiffer. Les couples maximaux mis en œuvre s'appliquent au matériau standard du tableau 3.

Calcul et dimensionnement de la vanne à boisseau sphérique

- 1. Détermination des diamètres nominaux nécessaires
- 2. Sélection de l'armature conformément au tableau 2, au tableau 3 et au diagramme de pression-température correspondant
- 3. Sélection du servomoteur à l'aide du tableau 7
- 4. Sélection des équipements supplémentaires

Texte de commande

Vanne à boisseau sphérique en inox Type : BR 26d Diamètre nominal : DN / NPS Pression nominale : PN / Classe. . . Système d'étanchéité à ressort ou flottant, conception fire-

safe, éventuellement exécution spéciale

Marque du servomoteur : ...

Pression de commande ... bar

Position de sécurité : ...

Marque du contact de position : ...

Marque de l'électrovanne : ...

Marque du positionneur : ...

Autres

Fiche technique correspondante

- Notice de montage et de mise en service correspondante
- Manuel de sécurité correspondant
- Pour servomoteurs rotatifs
- ► EB 26d
- ► SH 26
- ► TB 31a

Les détails relatifs à la commande ainsi que les exécutions différant de cette description technique doivent être consultés,si besoin est, dans la confirmation de la commande.